The research article titled "Steric effect in alkylation reactions by N-alkyl-N-nitrosoureas: a kinetic approach" by J. A. Manso, M. T. Pérez-Prior, M. P. García-Santos, E. Calle, and J. Casado presents a study on the alkylation reactions of 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to DNA bases, by five N-alkyl-N-nitrosoureas (methyl-, ethyl-, propyl-, butyl-, and allylnitrosourea) were investigated in 7:3 (v/v) water/dioxane medium in the 5.0–6.5 pH range. Decomposition of allylnitrosoureas (ANU) gives rise to alkyldiazonium ions that yield NBP-R adducts directly or through carbocations in certain instances. The NBP alkylation rate constants by these species were determined. The following sequence of alkylating potential was found: methyl- > ethyl- > allyl- > propyl- > butyl group. Application of Ingold–Taft correlation analysis to the kinetic results revealed that the NBP alkylation reactions occur mainly through steric control. The values of the molar absorption coefficients of the NBP-R adducts also reveal the determinant influence of a steric effect in the formation of alkylation adducts. The kinetic results are consistent with the biological activity of ANU. Copyright © 2008 John Wiley & Sons, Ltd.

Keywords: reactivity of N-alkyl-N-nitrosoureas; steric effects

INTRODUCTION

Alkylating agents are considered to be archetypical carcinogens. Since the decomposition of alkyl nitrosoureas (ANU) gives rise to alkyldiazonium ions (RN+NN2) without any need for metabolic activation, they offer an ideal series of compounds in which to examine the effect of variations in chemical structure on alkylation potential. Previous studies (Chapter 3 of Reference [3]) have shown that some ANUs induce tumors in different organs of rats, but do not have a favorable partition coefficient into organic solvents from water. If physical properties such as solubility and partition coefficient play any role, it must be minor and perhaps limited to effects on potency. Some results have pointed to the structure of the alkyl group adjacent to the nitroso group as the most important determinant of the carcinogenic effect.

Since in spite of its chemical relevance, to our knowledge the chemical reactivity of alkyldiazonium ions as alkylating agents has not been investigated in a comparative quantitative way, here we were prompted to address this issue.

RESULTS AND DISCUSSION

The nucleophile 4-(p-nitrobenzyl)pyridine, NBP, a trap for alkylating agents with nucleophilic characteristics similar to DNA bases, was used as the alkylation substrate. This method was previously used by us to investigate the alkylation potential of strong alkylating reagents, such as lactones, as well as to determine the reactivity of much weaker alkylating molecules such as sorbates.

NBP alkylation reactions by methyl-, ethyl-, propyl-, butyl-, and allylnitrosourea (MNU, ENU, PNU, BNU, and AlNU, respectively) were investigated.

In order to render the NBP soluble, the ANU-NBP alkylation mixtures were prepared in 7:3 (v/v) water/dioxane medium.

Reactions were carried out in the 5.0–6.5 pH range. Acetic/acetate buffer was used to maintain pH constant. To monitor the alkylation reactions, 2.4-ml aliquots of the alkylation mixture were removed at different times and added to a cuvette containing 0.6 ml of 99% triethylamine reagent (Et3N), which stopped the alkylation process and generated a blue color, whose absorbance was measured at the wavelength of maximum absorption (shown below).

The blue NBP adducts showed maximum absorption at λMNU = 573 nm, λENU = 570 nm, λPNU = 570 nm, λBNU = 570 nm, and λAlNU = 557 nm. As an example, Fig. 1 shows the increase in absorption caused by the formation of the NBP-adduct with MNU over time until no change in absorbance, A, was observed. Because NBP was in large excess, it may be assumed that all the nitroso group was consumed.

Figure 2 represents typical kinetic runs for the alkylation of NBP by nitrosoureas.

The experimental rate equation was

\[
rate = \frac{d[AD]}{dt} = \frac{k_{alk,dec}[OH^+][NBP]}{k_{alk}[NBP] + k_{H2O}[H_2O]}[ANU] = k_1[ANU] \quad (1)
\]

where [AD] is the concentration of NBP-R adducts, and \(k_1\) the pseudo-first-order rate constant:

\[
k_1 = \frac{k_{alk,dec}[OH^+][NBP]}{k_{alk}[NBP] + k_{H2O}[H_2O]} \quad (2)
\]
The significance of the different rate constants appearing in Eqn (1) can be seen in Scheme 1. In the case of MNU and ENU the effective alkylating agents should be methyl- and ethyldiazonium ions to give rise NBP-R adducts (R = CH₃ and C₂H₅, respectively).[13,14] For the other nitrosoureas, looking at PNU as an example, the propyldiazonium ion resulting from its decomposition undergoes, in competition, elimination to alkenes, concurrent Sn₂ substitution and hydride shift yielding a sec-carbocation that can undergo partitioning between the associated NBP nucleophile and solvent.[15,16] The method here used to monitoring the alkylation reactions allows one to determine k_{alk} rate constant that represents globally any alkylation mechanisms.

The influence of $[\text{OH}^-]$ and $[\text{NBP}]$ fits Eqn (2) (as shown in Figs 3 and 4). Eqn (3) (derived from Eqn (2)) shows that the hydrolysis of alkylating ions (rate constant k_{H_2O} in Eqn (1)) is the main reaction responsible for their consumption when the concentration of the alkylation substrate [NBP] tends to zero:

$$\lim_{{[\text{NBP}] \to 0}} \frac{d[\text{NBP}]}{d[\text{OH}^-]} = \frac{k_{\text{alk}}k_{\text{dec}}[\text{OH}^-]}{k_{H_2O}[H_2O]}$$ (3)

By designating the absorbance values of the NBP-R adducts as A_0, A_t, and A_{∞} at times, respectively, of zero, t, and infinity (i.e., when the plateau is reached; as shown in Fig. 2), ε_{ANU}, ε_{NBP}, and ε_{AD} being the molar absorption coefficients of the ANU, NBP, and adducts, respectively, and x the adduct concentration,
Eqns (4)–(6) can be written as

\[A_0 = \varepsilon_{ANU}[ANU]_0 + \varepsilon_{NBP}[NBP] \]
(4)

\[A_t = \varepsilon_{ANU}[ANU]_0 - x + \varepsilon_{NBP}[NBP] + x\varepsilon_{AD} \]
(5)

\[A_\infty = \varepsilon_{AD}[ANU]_0 + \varepsilon_{NBP}[NBP] \]
(6)

Integration of Eqn (1) gives

\[A_t - A_0 = (A_\infty - A_0)(1 - e^{-kt}) \]
(7)

Figure 2 shows the fitting of the experimental data to Eqn (7).

Figure 3. Influence of [OH\(^-\)] in the alkylation reaction of NBP by MNU at 25.0 °C (●), 27.5 °C (■), 30.0 °C (▲), 32.5 °C (×), and 35.0 °C (○); [NBP]\(_0\) = 0.02 M; [MNU]\(_0\) = 8 × 10\(^{-4}\) M

Figure 4. Influence of [NBP] in the alkylation reaction of NBP by MNU at 25 °C in 7:3 water/dioxane medium. [MNU]\(_0\) = 8 × 10\(^{-4}\) M; pH = 5.72

Eqn (2) can be written in the form:

\[\frac{k_1}{[OH^-]k_{dec}} = \frac{k_{alk}/k_{H2O}[NBP]}{k_{alk}/k_{H2O}[NBP] + [H_2O]} \]
(8)

Figure 5 plots the \(k_1/[OH^-] k_{dec} \) values against those of [NBP]. The \(k_{alk}/k_{H2O} \) ratios for the different alkylidiazonium ions were calculated by a nonlinear optimization method. Since the \(k_{dec} \) values were needed to be known, ANU decomposition reactions were investigated directly. These reactions were monitored spectrophotometrically at the wavelengths of maximum absorption for each of the ANUs studied here (\(\lambda_{ANU} = 251 \) nm, \(\lambda_{ENU} = 248 \) nm, \(\lambda_{PNU} = 244 \) nm, \(\lambda_{BNU} = 244 \) nm, and \(\lambda_{AlNU} = 243 \) nm).

In the 5.0–7.0 pH range, the following rate equation was observed for ANU decomposition:

\[-\frac{d[ANU]}{dt} = k_{dec}[OH^-][ANU] = k'[ANU] \]
(9)

where \(k' \) is the pseudo-first-order rate constant (in this pH range, the decomposition reaction of ANU is not catalyzed by the buffer\(^{17}\)).

Figure 6 shows a typical kinetic run for the decomposition of MNU. Experiments at different pHs were carried out (Fig. 7), the slope \(\alpha = 1 \) revealing first order with respect to the concentration of \(OH^- \).

Table 1 gives the values of \(k_{dec} \) measured for the decomposition of the five nitrosoureas investigated here. These results are consistent with those measured earlier in water medium.\(^{17,18}\) Table 2 shows the values of the activation parameters \(\Delta H^\theta \) and \(\Delta S^\theta \) for the decomposition reactions.

As is known,\(^{19,20}\) the existence of an isokinetic relationship can serve as an argument – but not proof – that the reactions studied share a common feature. The meaning of the isokinetic relationship is the existence of a compensation effect between the values of enthalpy, \(\Delta H^\theta \), and the entropy of activation, \(\Delta S^\theta \), such that the Gibbs’ energy of activation, \(\Delta G^\theta \), is approximately constant.

The results shown in Fig. 8 support the idea of a common mechanism.
Table 3 gives the k_{alk}/k_{H2O} values for the alkylation/hydrolysis reactions studied here. The results show: (i) the following sequence of reactivity (expressed as k_{alk}/k_{H2O}, as shown in Scheme 1) for diazonium ions (directly or through alkyl cations): MN$_2^+$ > EN$_2^+$ > AlN$_2^+$ > PN$_2^+$ > BN$_2^+$; (ii) a higher value of k_{alk}/k_{H2O} for the allyldiazonium ion as compared with those obtained for propyl- and butyldiazonium ions. This can be rationalized in terms of the electronic structure of that ion. Since unlike the propyldiazonium ion (with the same number of carbon atoms) the allyldiazonium ion has two possible electrophilic sites [21] (C1 and C3 positions), the reactivity of AlN$_2^+$ should be appreciably greater than that of PN$_2^+$ (approx. twofold greater), as was indeed observed (this assumption requires that the NBP alkylation reaction by AlN$_2^+$ be more sensitive to the particular structure of this ion than its competitive solvent reaction); (iii) the hydrolysis of the

Table 1. Decomposition rate constants (k_{dec} in Scheme 1) as a function of temperature for N-alkyl-N-nitrosoureas in 7:3 water/dioxane medium

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>$10^{-4} k_{MNU}$</th>
<th>$10^{-4} k_{ENU}$</th>
<th>$10^{-4} k_{PNU}$ (M$^{-1}$ min$^{-1}$)a</th>
<th>$10^{-4} k_{BNU}$</th>
<th>$10^{-4} k_{AlNU}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.0</td>
<td>4.2 ± 0.1</td>
<td>2.4 ± 0.2</td>
<td>2.14 ± 0.03</td>
<td>2.56 ± 0.03</td>
<td>4.81 ± 0.01</td>
</tr>
<tr>
<td>27.5</td>
<td>5.5 ± 0.1</td>
<td>3.6 ± 0.2</td>
<td>3.1 ± 0.1</td>
<td>4.00 ± 0.02</td>
<td>7.6 ± 0.1</td>
</tr>
<tr>
<td>30.0</td>
<td>7.9 ± 0.1</td>
<td>4.5 ± 0.5</td>
<td>4.5 ± 0.3</td>
<td>5.68 ± 0.04</td>
<td>10.9 ± 0.2</td>
</tr>
<tr>
<td>32.5</td>
<td>11.7 ± 0.2</td>
<td>7.4 ± 0.6</td>
<td>7.0 ± 0.1</td>
<td>8.38 ± 0.07</td>
<td>15.0 ± 0.2</td>
</tr>
<tr>
<td>35.0</td>
<td>16.0 ± 0.3</td>
<td>12.6 ± 0.4</td>
<td>10.2 ± 0.3</td>
<td>12.4 ± 0.1</td>
<td>23.4 ± 0.3</td>
</tr>
</tbody>
</table>

aValues are given within the 95% confidence interval.
alkyldiazonium ions is not sufficiently effective to prevent alkylation; (iv) the kinetic results are consistent with the known fact that the biological activity of ANU decreases when their molecular size increases, hindered ANU being biologically inactive.\cite{3,22}

In order to analyze the influence of steric and polar effects on the relative alkylating potential of alkyldiazonium ions (expressed as k_{alk}/k_{H2O}), the Ingold–Taft correlation equation\cite{23} was applied:

$$\log \left(\frac{k_{alk}}{k_{H2O}} \right)_{RN^+} = \sigma^* + E_s$$ \hspace{1cm} (10)

The values for σ^* (polar constant) and E_s (steric constant) were taken from the literature.\cite{24,25}

Correlations with E_s, on the one hand, and with σ^*, on the other, were used to check whether these reactions were controlled mainly by steric or mainly by polar effects. Figure 9 shows the respective plots, together with the plot representing the influence of steric and polar effects jointly (Eqn (10)).

The results show that: (i) owing to the positive sign of the reaction constant ρ^* the NBP alkylation reactions by RN$^+$ must occur through nucleophilic attack; (ii) these reactions are mainly controlled by the size of the alkyl R groups; (iii) the deviation

<table>
<thead>
<tr>
<th>Alkyldiazonium ion</th>
<th>k_{alk}/k_{H2O} (35 °C)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl</td>
<td>12 878 ± 102</td>
</tr>
<tr>
<td>Ethyl</td>
<td>10 809 ± 179</td>
</tr>
<tr>
<td>Propyl</td>
<td>4691 ± 61</td>
</tr>
<tr>
<td>Butyl</td>
<td>3204 ± 117</td>
</tr>
<tr>
<td>Allyl</td>
<td>8169 ± 167</td>
</tr>
</tbody>
</table>

aValues given with their standard deviations.

Figure 9. Influence of (a) steric; (b) polar, and (c) steric + polar effects on the reactivity of alkyldiazonium ions as alkylating agents
shown by the allyldiazonium ion is quite understandable due to its above-cited particular electronic structure.

Molar absorption coefficients of the NBP-R adducts

We were also interested in knowing the molar absorption coefficients (ε) of the NBP-R adducts. Knowledge of these values should permit easy determination of the concentration of adducts by simply measuring the absorbance.

Experiments were performed with $[\text{NBP}] = 0.02 \text{ M}$ and ANU concentrations in the 4×10^{-4} to $1.5 \times 10^{-3} \text{ M}$ range.

The correlations between $A_{\infty} - A_0$ values and those of $[\text{ANU}]_0$ give the values of the molar absorption coefficients shown in Table 4.

The structures of the NBP-R adducts obtained by geometry optimization (as shown in Experimental Section) revealed (Fig. 10) that the values of ε increase when the size of RN$_2^+$ decreases (the second highest value for NBP-Al must be due to the particular electronic structure of the allyl group; refer to comments given above). The greater the non-planarity in the NBP-R adducts, disrupting the π-electron cloud to interlink the two phenyl rings, the smaller the values of ε (Fig. 11).

A similar argument can be invoked to rationalize the fact that the biological activity of ANUs decreases when their molecular size increases:[3,22] the smaller the alkyl group of the diazonium ions, the stronger the linkage between DNA nucleophile sites and the electrophilic alkylidiazonium ions.

CONCLUSIONS

- The alkylation reactions of the nucleophile NBP by N-alkyl-N-nitrosoureas occur through a mechanism that includes the decomposition of ANU to alkylidiazonium ions (RN$_2^+$) that yield NBP-R adducts directly or through cations in certain instances.
- The sequence of reactivity of RN$_2^+$ ions as direct/indirect NBP alkylating agents is: methyl- $>$ ethyl- $>$ allyl- $>$ propyl- $>$ butyldiazonium ion. Application of Ingold-Taft treatment to the kinetic results revealed that the NBP alkylation reactions by diazonium ions occur under steric control. This may explain why the biological activity of ANU decreases when their molecular size increases (hindered ANUs are biologically inactive).
- The values of the molar absorption coefficients for the NBP-R adducts also reveal the determinant influence of steric effect in the formation of alkylation adducts.

EXPERIMENTAL

General remarks

A Shimadzu UV-2401-PC spectrophotometer with a thermoelectric six-cell holder temperature control system $\pm 0.1 \text{ °C}$ was used. The reaction temperature was kept constant $\pm 0.05 \text{ °C}$ with a Lauda Ecoline RE120 thermostat.

A Crison Micro pH 2000 pH-meter was used to perform pH measurements ± 0.01.

Water was deionized with a MilliQ-Gradient (Millipore).

All kinetic runs were performed in triplicate.

Numerical treatment of the data was performed using the 7.1.44 Data Fit software. Geometry optimization of the NBP-R adducts was carried out with the Chem3D Ultra Molecular Modeling and Analysis software, version 9.0, and with Gaussian 03W Client Pro 9.0. The PM3 semiempirical method was used.

Table 4. Molar absorption coefficients of the NBP-R adducts

<table>
<thead>
<tr>
<th>NBP-R adduct</th>
<th>λ (nm)</th>
<th>ε (M$^{-1}$ cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP-Me</td>
<td>573</td>
<td>521 ± 30</td>
</tr>
<tr>
<td>NBP-Al</td>
<td>557</td>
<td>282 ± 20</td>
</tr>
<tr>
<td>NBP-Et</td>
<td>570</td>
<td>204 ± 8</td>
</tr>
<tr>
<td>NBP-Bu</td>
<td>570</td>
<td>93 ± 11</td>
</tr>
<tr>
<td>NBP-Pr</td>
<td>570</td>
<td>65 ± 8</td>
</tr>
</tbody>
</table>

Figure 10. Lack of coplanarity in the NBP-R adducts

Figure 11. Correlation between the structure of NBP-R adducts and their molar absorption coefficients, ε.
Procedures: synthesis of \(N\)-alkyl-\(N\)-nitrosoureas

\(N\)-Methyl-\(N\)-nitrosourea and \(N\)-ethyl-\(N\)-nitrosourea were obtained from Sigma.

\(N\)-Propyl-\(N\)-nitrosourea, \(N\)-butyl-\(N\)-nitrosourea, and \(N\)-allyl-\(N\)-nitrosourea were prepared from the respective \(N\)-alkylureas. \(N\)-Butylurea was obtained from Fluka while \(N\)-propylurea and \(N\)-allylurea were Alfa and Merck products, respectively.

PNU, BNU, and AlNU were prepared as by Werner.\(^{[26]}\) The respective \(N\)-alkylureas (approx. 1 g) were dissolved in water and 10 g of sodium nitrite was added. The mixture was cooled to below 0 °C and ice-cold sulfuric acid (10%) was added dropwise during continuous stirring. The nitrosoureas precipitated as yellow crystals. After vacuum filtration, the crystals collected were repeatedly washed with cool water and then desiccated.

Acknowledgements

The authors thank the Spanish Ministerio de Educación y Ciencia (Projects CTQ2004-05048/BQU and CTQ2007-63263), as well as the Spanish Junta de Castilla y León (Grant SA011A05) for supporting the research reported in this paper. J.A.M and M.T.P. also thank the Ministerio de Educación y Ciencia and the Junta de Castilla y León for Ph.D. grants. The authors also thank the referees for their valuable comments.

REFERENCES

