Reactivity of Amino Acids in Nitrosation Reactions and Its Relation to the Alkylating Potential of Their Products

M. del Pilar García-Santos, Samuel González-Mancebo, Jesús Hernández-Benito, Emilio Calle, and Julio Casado*

Contribution from the Departamento de Química Física, Universidad de Salamanca, E-37008 Salamanca, Spain

Received August 10, 2001

Abstract: Nitrosation reactions of amino acids with an \(-\text{NH}_2\) group [namely, six \(\alpha\)-amino acids (glycine, alanine, \(\alpha\)-amino butyric acid, \(\alpha\)-aminoisobutyric acid, valine, and norvaline); two \(\beta\)-amino acids (\(\beta\)-alanine and \(\beta\)-amino butyric acid), and one \(\gamma\)-amino acid (\(\gamma\)-aminoisobutyric acid)] were studied. Nitrosation was carried out in aqueous acid media, mimicking the conditions of the stomach lumen. The rate equation was \(r = k_{\text{avg}}[\text{amino acid}][\text{nitrite}]^2\), with a maximum \(k_{\text{avg}}\) value in the 2.3–2.7 pH range. The existence of an isokinetic relationship supports the argument that all the reactions share a common mechanism. A nitrosation mechanism is proposed, and the following conclusions are drawn: (i) Nitrosation reactions of amino acids with a primary amino group in acid media occur with dinitrogen trioxide as the main nitrosating agent. The finding that the nitrosation rate is proportional to the square of the nitrite concentration suggests that the yield of nitrosation products in the stomach would increase sharply with higher nitrate/nitrite intakes. (ii) Stomach hypochlorhydria could be a potential enhancer of in vivo amino acid nitrosation. (iii) The reactivity (\(k_{\text{avg}}\) [\(\alpha\)-amino acids > \(\beta\)-amino acids > \(\gamma\)-amino acids]) is the same as that found in a previous work for the alkylating potential of lactones formed from nitrosation products of the same amino acids. This implies that the nitrosation reactions of the most common natural amino acids are the most efficient precursors of the most powerful alkylating agents. (iv) The order of magnitude \((10^7 - 10^8 \text{ M}^{-1} \text{s}^{-1})\) of the bimolecular rate constants of nitrosation shows that such reactions occur through an encounter process.

Introduction

\(N\)-Nitroso compounds are unique among carcinogenic agents in being active in all species and in displaying a broad spectrum of target cells and organs in which they are able to induce cancer. The formation of nitroso compounds can occur in food (when preserved with nitrite), in the environment, and in the digestive tract (especially in the stomach). Some \(N\)-nitroso compounds are even synthesized by plants, although most of these are formed incidentally through the nitrosation of amines.\(^1\)\(^-\)\(^4\)

Biologists have mainly been interested in the pathogenic mechanisms in which such species are involved,\(^1\)\(^,\)\(^3\) whereas chemists have been more interested in their formation mechanisms\(^5\)\(^-\)\(^8\) and hence in ways to block or inhibit them.\(^9\)\(^-\)\(^13\)

The nitrosation of amino acids is particularly interesting. In the case of amino acids with a secondary amino group, besides direct nitrosation by \(\text{NO}^+\) and \(\text{N}_2\text{O}_3\), a nitrosation mechanism through the initial formation of a nitrosyl carboxylate followed by a slow intramolecular rearrangement has been reported.\(^14\)\(^-\)\(^16\)

The nitrosation of amino acids with an \(-\text{NH}_2\) group has received little attention because they afford unstable products. Due to this instability, our research was carried out in two stages: (i) study of the nitrosation of amino acids with \(-\text{NH}_2\) group and (ii) identification of alkylating agents resulting from nitrosation and study of their alkylating potential.

In previous work,\(^1\)\(^7\) our attention focused on the second of the above stages; the present study addresses the first aim.

We investigated the nitrosation of six \(\alpha\)-amino acids with \(\text{NaNO}_2\) in acidic media \([\text{glycine (Gly)}, \text{DL-\(\alpha\)-alanine (Ala)}, \text{DL-\(\alpha\)-aminobutyric acid (\(\alpha\)-Amb)}, \text{valine (Val)}, \text{and norvaline (nor-Val)}]\), two \(\beta\)-amino acids \([\beta\)-alanine (\(\beta\)-Ala) and DL-\(\beta\)-aminobutyric acid (\(\beta\)-Amb)]\), and one \(\gamma\)-amino acid \([\gamma\)-aminobutyric acid (\(\gamma\)-Amb)]\).

These nitrosatable substrates were chosen with two criteria: (i) structural, to analyze the influence of the relative position of the amino and carboxy groups in the nitrosation rate, and (ii) their presence in nature (more \(\alpha\)-amino acids were chosen because these are the most common species found).

Experimental Section

Amino acid solutions were made up by weight from Merck 99% glycine and valine; Aldrich 99% alanine, \(\alpha\)-aminobutyric, \(\alpha\)-aminoisobutyric acid, norvaline, and \(\beta\)-alanine, and 97% \(\beta\)-aminobutyric acid and \(\gamma\)-aminobutyric acid.

\(\text{NaNO}_2\) solutions were made up by weight, after desiccation for 2 h at 110 °C.

Since the HNO\(_2/\text{NO}_2^-\) system (henceforth nitrite, Nit) shows maximum absorption at \(\lambda = 371\) nm, nitrite was used as the control species for monitoring the nitrosation reactions.

UV-absorption spectra and spectrophotometric measurements were carried out on a Shimadzu 2101PC double-beam spectrophotometer with a thermoelectric six-cell holder temperature control system (± 0.1 °C).

Results and Discussion

Experiments designed to investigate the influence of the nitrite concentration revealed the reaction to be second order with respect to this reagent

\[
\text{rate} = k_3 \exp \left[\text{amino acid}\right] \times \left[\text{Nit}\right]^2 \quad (1)
\]

Figure 1 shows typical kinetic runs.

Figure 2 represents the integrated form of eq 1 in terms of absorbance \(A\) and \(A_0\) being the initial absorbance. The good linear fitting of the \(A/A_0\) values against those of \(t\) reveals second order with respect to the nitrite concentration, involving dinitrogen trioxide as the main nitrosating agent.\(^{(18)}\)

Figure 3 shows the results obtained on working with different initial concentrations of each amino acid \([\text{amino acid]}_0\), first order being observed with respect to the amino acid concentration.

The above two sets of experiments imply the following rate equation:

\[
\text{rate} = k_3 \exp \left[\text{amino acid}\right] \times \left[\text{Nit}\right]^2 \quad (2)
\]

Comparison of eqs 1 and 2 yields

\[
k_2 \exp = k_3 \exp \left[\text{amino acid}\right] \quad (3)
\]

allowing \(k_3 \exp\) to be calculated. Figure 4 shows an example of the linear correlation between the values of \(k_2 \exp\) and those of \([\text{amino acid]}_0\) (since \([\text{amino acid]} \approx [\text{amino acid]}_0\), because \([\text{amino acid]}_0 \gg [\text{Nit}]_0\) with the intercept not significantly different from zero.

The results obtained (Table 1) show the following general sequence of \(k_3 \exp\): \(\alpha\)-amino acid > \(\beta\)-amino acid > \(\gamma\)-amino acid.

No influence of the ionic strength on the rate constant $k_{3 \text{ exp}}$ was observed (Figure 5).

Figure 6 shows the dependence of $k_{3 \text{ exp}}$ on the pH of the medium.

To approach in vivo conditions, nitrosation was carried out in aqueous acid media, mimicking the conditions of the stomach lumen. All reactions showed analogous profiles, with a maximum in the 2.3–2.5 pH range for α-amino acids and centered at pH 2.7 for β- and γ-amino acids.

No influence of the ionic strength on the rate constant $k_{3 \text{ exp}}$ was observed (Figure 5).

Figure 6 shows the dependence of $k_{3 \text{ exp}}$ on the pH of the medium.

To approach in vivo conditions, nitrosation was carried out in aqueous acid media, mimicking the conditions of the stomach lumen. All reactions showed analogous profiles, with a maximum in the 2.3–2.5 pH range for α-amino acids and centered at pH 2.7 for β- and γ-amino acids.

<table>
<thead>
<tr>
<th>amino acid</th>
<th>pH</th>
<th>$10^5k_{3 \text{ exp}}$ (M$^{-2}$ s$^{-1}$)</th>
<th>pH</th>
<th>$10^5k_{3 \text{ exp}}$ (M$^{-2}$ s$^{-1}$)</th>
<th>pH</th>
<th>$10^5k_{3 \text{ exp}}$ (M$^{-2}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>glycine</td>
<td>2.53</td>
<td>16.6 ± 0.3</td>
<td>3.15</td>
<td>8.8 ± 0.2</td>
<td>3.51</td>
<td>4.1 ± 0.1</td>
</tr>
<tr>
<td>alanine</td>
<td>2.53</td>
<td>5.41 ± 0.06</td>
<td>3.17</td>
<td>3.34 ± 0.08</td>
<td>3.50</td>
<td>1.56 ± 0.05</td>
</tr>
<tr>
<td>α-amino butyric acid</td>
<td>2.52</td>
<td>7.4 ± 0.4</td>
<td>3.16</td>
<td>4.31 ± 0.09</td>
<td>3.55</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>γ-amino butyric acid</td>
<td>2.53</td>
<td>1.22 ± 0.07</td>
<td>3.18</td>
<td>0.69 ± 0.03</td>
<td>3.52</td>
<td>0.33 ± 0.01</td>
</tr>
<tr>
<td>valine</td>
<td>2.50</td>
<td>11.5 ± 0.2</td>
<td>3.18</td>
<td>6.1 ± 0.1</td>
<td>3.54</td>
<td>3.00 ± 0.03</td>
</tr>
<tr>
<td>norvaline</td>
<td>2.52</td>
<td>7.2 ± 0.2</td>
<td>3.12</td>
<td>4.2 ± 0.1</td>
<td>3.55</td>
<td>2.05 ± 0.07</td>
</tr>
<tr>
<td>β-alanine</td>
<td>2.65</td>
<td>2.9 ± 0.1</td>
<td>3.15</td>
<td>2.44 ± 0.07</td>
<td>3.50</td>
<td>1.58 ± 0.05</td>
</tr>
<tr>
<td>β-amino butyric acid</td>
<td>2.66</td>
<td>1.60 ± 0.05</td>
<td>3.13</td>
<td>1.29 ± 0.02</td>
<td>3.50</td>
<td>0.80 ± 0.01</td>
</tr>
<tr>
<td>γ-amino butyric acid</td>
<td>2.75</td>
<td>1.02 ± 0.01</td>
<td>3.12</td>
<td>0.95 ± 0.03</td>
<td>3.48</td>
<td>0.620 ± 0.006</td>
</tr>
</tbody>
</table>

Figure 3. Kinetic order in amino acid in the nitrosation reactions. [Nit]$_0$ = 0.0100 M, [NaH$_2$PO$_4$] = 0.50 M, I = 1.00 M, T = 298 K: (●) norvaline, pH 3.03; (■) β-amino butyric acid, pH 3.00; (▲) γ-amino butyric acid, pH 3.14.

Figure 4. Determination of the rate constant $k_{3 \text{ exp}}$ in the nitrosation of amino acids (eq 3). [Nit]$_0$ = 0.0100 M, [NaH$_2$PO$_4$] = 0.50 M, I = 1.00 M, T = 298 K: (●) norvaline, pH 3.03; (■) β-amino butyric acid, pH 3.00; (▲) γ-amino butyric acid, pH 3.14.

Figure 5. No influence of the ionic strength on the nitrosation rate constant $k_{3 \text{ exp}}$ (eq 2). [Gly]$_0$ = 0.300 M, [Nit]$_0$ = 0.0100 M, [NaH$_2$PO$_4$] = 0.50 M, pH 3.00, T = 298 K.

Figure 6. Fitting of the experimental nitrosation rate constant to the theoretical rate equation. [Nit]$_0$ = 0.010 M, [NaH$_2$PO$_4$] = 0.50 M, I = 1.00 M, T = 298 K: (●) [Val]$_0$ = 0.300 M, (■) [α-Amb]$_0$ = 0.300 M, (▲) [β-Amb]$_0$ = 0.300 M, (○) [Gly]$_0$ = 0.300 M, (□) [Ala]$_0$ = 0.300 M. Dots are experimental values. Solid lines fit eq 7.

To rationalize the results obtained, the mechanism shown in Scheme 1 is proposed.

The first step represents the protonation equilibrium of the amino acid. K_1 and K_{II} are the macroscopic constants for the loss, respectively, of the first and second protons. K_I, K'_{II}, K''_{II}, and K_{III} are microscopic constants whose values are not accessible experimentally.

The values of the microscopic constants can be estimated from K_I and K_{II} by assuming the microscopic constant K'_{II} to be...
approximately equal to the acidity constant of an ester of the amino acid K_e. The concentrations of the species A, B, C, and D can then be expressed as a function of the acidity and the total concentration of the amino acid: $[\text{amino acid}] = [\text{AA}] \approx [A] + [B]$ in the working conditions.

Scheme 1. Nitrosation Mechanism

$$r = k_3[D][\text{N}_2\text{O}_3] + k_6[C][\text{N}_2\text{O}_3]$$

where the first and second terms, respectively, represent the attack of the neutral and basic forms of each amino acid by dinitrogen trioxide.

As in the nitrosation of amino acids with a secondary amino group, besides N_2O_3 as a nitrosating agent NO^+ should also be included in the mechanism. Nevertheless, since the rate constant of the attack by NO^+ is negligible compared with that of N_2O_3, for simplicity we have not taken it into account here.

Since $[\text{Nit}] = [\text{HNO}_2] + [\text{NO}_2^-]$, it is easy to deduce that:

$$r = k_3K_dK_e \frac{[\text{AA}][\text{Nit}][\text{H}^+]^2}{(K_1 + [\text{H}^+])(K_2 + [\text{H}^+])^2} + k_6K_{II}K_M \frac{[\text{AA}][\text{Nit}][\text{H}^+]}{(K_1 + [\text{H}^+])(K_2 + [\text{H}^+])^2}$$

(5)

where $K_M = K_a K_2 K_3 = 3.03 \times 10^{-3}$ M$^{-1}$. Equation 5 is consistent with the experimental reaction orders.

Setting $\alpha = k_3K_dK_e$, $\beta = K_a$, and $\gamma = k_6K_{II}K_M$, eq 6 can be written:

$$r = \alpha \frac{[\text{AA}][\text{Nit}][\text{H}^+]^2}{(K_1 + [\text{H}^+])(\beta + [\text{H}^+])^2} + \gamma \frac{[\text{AA}][\text{Nit}][\text{H}^+]}{(K_1 + [\text{H}^+])(\beta + [\text{H}^+])^2}$$

(6)

Comparison of the experimental (eq 2) and theoretical (eq 6) rate equations gives:

$$k_{3\text{exp}} = \alpha \frac{[\text{H}^+]^2}{(K_1 + [\text{H}^+])(\beta + [\text{H}^+])^2} + \gamma \frac{[\text{H}^+]}{(K_1 + [\text{H}^+])(\beta + [\text{H}^+])^2}$$

(7)

Since for each pH the value of $k_{3\exp}$ is experimentally known, α, β, and γ can be calculated by a nonlinear optimization algorithm.\(^{22}\)

As examples, Figure 6 shows the good fits of the experimental results to eq 7 for α-, β-, and γ-amino acids.

Table 2 summarizes the values obtained for α, γ, and pK_{a} as well as the calculated k_{a} and k_{b} values.

The results in Table 2 show the following:

(i) There is good agreement between the value obtained for pK_{a} = log$(1/\beta)$ and the commonly accepted value (pK_{a} = 3.006 at ionic strength I = 0.937 M),\(^{23}\) which supports the validity of eq 5 and the mechanism from which it was derived.

(ii) The order of magnitude (10^{7} - 10^{8} M$^{-1}$s$^{-1}$) of the bimolecular rate constants k_{a} and k_{b} is coherent with an encounter mechanism. This result agrees with that found for the nitrosation of amino acids with a secondary amino group\(^{15,16}\) as well as for the nitrosation of very different amines.\(^{24}\)

(iii) The values of the rate coefficient k_{a} follow the sequence R-amino acids < β-amino acids < γ-amino acids.

Even though the k_{a} values lie within the accepted range corresponding to an encounter process, the results appear to demonstrate the influence of the different nucleophilicities of the amino acids attacked by the electrophilic N$_{2}$O$_{3}$. This can be explained through the electron-withdrawing ($-I$) effect\(^{25}\) of the $-\text{COOH}$ increasing the nucleophilicity of the $-\text{NH}_{2}$ group in the following order: α-amino acids < β-amino acids < γ-amino acids.

(iv) In the α-amino acid series, the following sequence of k_{a} values is observed: α-Aminobutyric acid < α-Alanine < α-Valine < γ-Aminobutyric acid.

This sequence is understandable in terms of steric hindrance for the electrophilic attack of the $-\text{NH}_{2}$ by the voluminous dinitrogen trioxide. Hindrance is maximum for R-Aminoisobutyric acid and minimum for glycine. This is consistent with the known fact that in peptides with glycine as the terminal amino acid, a glycine residue can adopt many conformations that are sterically hindered for other amino acids due to the small size of the hydrogen substituent\(^{26}\) (the possibility of using steric hindrance for blocking or inhibiting nitrosation by N$_{2}$O$_{3}$ has been discussed in the literature\(^{13}\)).

(v) The observed fact (Table 2) that k_{b} values are always higher than those of k_{a} is consistent with the electron-donating ($+I$) effect\(^{25}\) of the COO$^{-}$ group on the nucleophilic site of the amino acid. Nevertheless, a high dispersion in k_{b} values is seen; this is a consequence of the large deviations affecting the γ-values used to calculate those of k_{b}.

As is known,\(^{27}\) the existence of an isokinetic relationship can serve as an argument, but not proof, that the reactions studied share a common feature.

\(^{a}\) A single asterisk indicates the experimental value: $^{23} pK_{a}$ = 3.006. The double asterisk indicates that no value was calculated because the corresponding K_{e} value was not available in the literature.

\(^{(27)}\) Exner, O. Correlation Analysis of Chemical Data; Plenum: New York, 1988; p 106.
A mathematical formulation of the isokinetic effect is the linear relationship between two series of log \(k \) values measured at two temperatures: \(T_1 \) and \(T_2 \). Thus

\[
\log k(T_2) = a + b \log k(T_1)
\]

The meaning of the isokinetic relationship is the existence of a compensation effect between the values of enthalpy, \(\Delta H^\# \), and the entropy of activation, \(\Delta S^\# \), such that the Gibbs' energy of activation, \(\Delta G^\# \), is approximately constant.\(^\text{(28)}\)

The results shown in Figure 7 support the idea of a common mechanism.

In the second stage of this investigation,\(^\text{17}\) the kinetic evolution of the nitrosation products was studied. It was observed that after the nitrosation of amino acids, lactones are formed, whose alkylating potential was studied. The following sequence of alkylating power was found: \(\alpha \)-lactones \(> \beta \)-lactones \(> \gamma \)-lactones, coming respectively from the nitrosation of \(\alpha \)-, \(\beta \)-, and \(\gamma \)-amino acids. This implies that the nitrosation reactions of the most common natural amino acids are the most efficient precursors of the most powerful alkylating agents.

Conclusions

(i) Nitrosation reactions of amino acids with a primary amino group in acid media occur with dinitrogen trioxide as the main nitrosating agent.

The finding that the nitrosation rate is proportional to the square of the nitrite concentration suggests that the yield of nitrosation products in the stomach would increase sharply with higher nitrate/nitrite intakes.

The experimental nitrosation rate constant shows a maximum in the 2.3–2.5 pH range for \(\alpha \)-amino acids and pH 2.7 for \(\beta \)- and \(\gamma \)-amino acids. As a consequence, attention should be paid to stomach hypochlorhydria as a potential enhancer of in vivo amino acid nitrosation reactions.

(ii) The reactivity (in terms of the experimental rate constant of nitrosation) \(\alpha \)-amino acids \(> \beta \)-amino acids \(> \gamma \)-amino acids is the same as that found for the alkylating potential of lactones formed from nitrosation products. This implies that the nitrosation reactions of the most common natural amino acids are the most efficient precursors of the most powerful alkylating agents.

(iii) The experimental results suggest a mechanism for the nitrosation of amino acids, whose rate-limiting step is bimolecular attack by \(\text{N}_2\text{O}_3 \) on the free base form of the amino group of the neutral and basic forms of the amino acids.

Although the bimolecular rate constants lie within the range accepted for encounter processes, the results point to a certain influence of the different nucleophilicities of the amino acids attacked by the electrophilic \(\text{N}_2\text{O}_3 \) as well as the steric hindrance of this molecule when it approaches the nitrosation site of the nitrosatable substrates.

Acknowledgment. This work was supported by the European Commission (Contract CVVF1-610-0) and the Spanish Ministerio de Ciencia y Tecnología (Grant BQU2001-1934). M.P.G.-S. also thanks the Universidad de Salamanca for a Ph.D. grant. Thanks are also given to the valuable comments made by the reviewers and the editorial suggestions.

JA0119503
