Aromatic C-nitrosation of a bioactive molecule. Nitrosation of minoxidil
Aromatic C-nitrosation of a bioactive molecule. Nitrosation of minoxidil†

Mario González-Jiménez, Jorge Arenas-Valgañón, Emilio Calle and Julio Casado*

Received 2nd May 2011, Accepted 26th May 2011
DOI: 10.1039/c1ob05686g

Minoxidil (2,4-diamino-6-(piperidin-1-yl)pyrimidine N(3)-oxide; CASRN 38304-91-5) is a bioactive molecule with several nitrosatable groups widely used as an antihypertensive and antialopecia agent. Here the nitrosation of minoxidil was investigated. The conclusions drawn are as follows: (i) In the pH = 2.3–5.0 range, the minoxidil molecule undergoes aromatic C-nitrosation by nitrite. The dominant reaction was C-5 nitrosation through a mechanism that appears to consist of an electrophilic attack on the nitrosatable substrate by H\textsubscript{2}NO2+/NO+, followed by a slow proton transfer; (ii) the reactivity of minoxidil as a C-nitrosatable substrate proved to be 7-fold greater than that of phenol, this being attributed to the preferred para- and ortho-orientations of the two -NH\textsubscript{2} groups at positions 2 and 4 of the minoxidil molecule, which activate electrophilic substitution in the C-5 position through their mesomeric effect. The N-nitrosominoxidil resulting from the nitrosation could be potentially harmful to the minoxidil users.

1 Introduction

The report by Magee and Barnes1 that dimethylnitrosamine induces liver cancer when fed to rats has prompted the study of the chemistry and biology of nitroso compounds. Biologists are mainly interested in the use of these compounds as models for producing a broad range of cancers2–9 whereas chemists are more interested first in the mechanisms of formation of nitroso compounds10–15 and then in blocking or inhibiting such mechanisms of these species16–18.

N-Nitrosation chemistry has been a fruitful area for the mechanistic organic and physical organic chemist. Many reactions are now well understood, and in several cases the nature of the effective nitrosating species has been established, often by kinetic procedures.10

By contrast, aromatic C-nitrosation is much less known and has been investigated in relatively few cases. The reason for this is that substantial activation by electron-releasing groups is necessary to produce nitrosation at a suitable reaction rate.

The molecular structure of the minoxidil (mnx) molecule (2,4-diamino-6-(piperidin-1-yl)pyrimidine N(3)-oxide; CASRN 38304-91-5; Fig. 1) means that this substance is very likely to undergo C-nitrosation at its C-5 position.

2 Results and discussion

2.1 Kinetics and mechanism

The nitrosation of minoxidil was carried out with sodium nitrite (nit) in perchloric aqueous solutions at pH = 2.3–7.5. A significant nitrosation reaction was only observed in the pH = 2.3–5.0 range. Using the initial-rate method,21 a first-order reaction with respect to the minoxidil concentration was observed (eqn (1) and Fig. 2).

\[
\text{initial rate} = a [\text{mnx}]
\]
Fig. 2 Partial orders of reaction with respect to the concentration of minoxidil (α, [nit] = 0.02 M) and to the nitrite (β). pH = 4.00, T = 20 °C, I = 0.2 M.

Experiments carried out with different excesses of sodium nitrite showed a first-order reaction (eqn (2)) with respect to its concentration (Fig. 2):

\[a = b[nit] \]

(2)

where \(a \) and \(b \) are experimental first-order rate constants.

To check that the order with respect to concentration coincided with the order with respect to time, experiments with equimolar concentrations (\(c \)) of nitrite and minoxidil were performed. Fig. 3 shows the good fit of the results to the integrated form of eqn (3), and reveals a global order two for the nitrosation reaction. This is consistent with no change in the reaction mechanism along the time of monitoring.

\[\text{rate} = \frac{dc}{dt} = k_{\text{obs}}[c]^2 = k_{\text{obs}}[\text{nit}][\text{mmx}] \]

(3)

Fig. 3 Integrated form of the second-order rate equation (eqn (3)) for the reaction between minoxidil and nitrite. \([\text{nit}]_0 = [\text{mmx}]_0 = 2 \times 10^{-4} \text{ M}, \text{pH} = 4.00, \text{T} = 20^\circ \text{C}, I = 0.2 \text{ M} \).

On the basis of these results, and taking into account the absence of order two with respect to the nitrite concentration (\(\text{viz.} \), the exclusion of dinitrogen trioxide as an effective nitrosating agent\(^{11} \)) and the lack of influence of ionic strength on \(k_{\text{obs}} \) (Fig. 4), a mechanism (Scheme 1) of aromatic electrophilic substitution by H₂NO₂⁺/NO⁺ (kinetically indistinguishable) whose rate-determining step is the deprotonation of the Wheland intermediate (\(\text{viz.} \), nitrosoarenium, Scheme 1, II)\(^{23,24} \) can be proposed. Direct observation of the Wheland intermediate in electrophilic aromatic substitution (formation of nitrosoarenium cations) has been performed previously\(^{25} \) using transient absorption spectroscopy.

From this mechanism, the rate eqn (4) is readily achieved.

\[\text{rate} = \frac{K_k k_a [\text{mmx}][\text{H}^+]^2}{([\text{H}^+] + K_1)(1 + \frac{k_c}{K_k k_e} [\text{H}^+])} \]

(4)

Fig. 5 shows the excellent fit of the values of the experimental rate constant \(k_{\text{obs}} \) to eqn (5). From the least-squares fit, where \(K_1 \) was fixed (\(K_1 = 6.652 \times 10^{-4} \text{ M}^{-1} \)) and \([\text{H}^+]\) was the variable, the \(K_k k_a \) and \(k_c/K_k k_e \) values were calculated (Table 1). Given that \(K_2 = 3 \times 10^{-5} \text{ M}^{-1} \), the value \(k_c = (1.5 \pm 0.1) \times 10^{10} \text{ M}^{-1} \text{s}^{-1} \) is easily
strates these results are consistent with an aromatic electrophilic substitution reactions. **Table 1** shows that the kinetic parameters of the nitrosation of minoxidil and other C-nitrosatable compounds calculated. The values for other C-nitrosatable compounds are also shown in Table 1.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(k_{\text{obs}} \times 10^{-9} \text{(M}^{-1} \text{s}^{-1})^a)</th>
<th>(k_{\text{obs}} \times 10^{-4} \text{(M}^{-1} \text{s}^{-1})^c)</th>
<th>(K_{a} k_{c}^{0.1} \times 10^{-4} \text{(M}^{-1} \text{s}^{-1})^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minoxidil</td>
<td>15 ± 1</td>
<td>0.17 ± 0.01</td>
<td>6.8 ± 0.1</td>
</tr>
<tr>
<td>Phenol</td>
<td>2.2 ± 0.02</td>
<td>6.3 ± 0.5</td>
<td>3.5 ± 0.3</td>
</tr>
<tr>
<td>(\alpha)-Cresol</td>
<td>2.4 ± 0.3</td>
<td>1.0 ± 0.2</td>
<td>3.2 ± 0.3</td>
</tr>
<tr>
<td>2,3-Dimethylphenol</td>
<td>3.6 ± 0.2</td>
<td>1.1 ± 0.2</td>
<td>3.0 ± 0.3</td>
</tr>
<tr>
<td>(\alpha)-Chlorophenol</td>
<td>0.33 ± 0.03</td>
<td>2.0 ± 0.2</td>
<td>2.2 ± 0.2</td>
</tr>
</tbody>
</table>

* Values are given with their standard deviations. * This work. * Values taken from González-Mancebo et al.18*

Furthermore, the existence of an isokinetic relationship can be used to support the argument that the reactions of a series of reagents share a common mechanism.26–37 To test this possibility, the activation parameters \(\Delta H^\ddagger\) and \(\Delta S^\ddagger\) were calculated with the values of \(k_{\text{obs}}\) measured at different temperatures (Table 2 and Fig. 6) using the Eyring equation,18

\[
\ln \frac{k_{\text{obs}}}{T} = \ln k + \frac{\Delta S^\ddagger}{R} - \frac{\Delta H^\ddagger}{RT}
\]

Table 2 Variation in the rate constant \(k_{\text{obs}}\) with temperature

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>(k_{\text{obs}} \times 10^2 \text{(M}^{-1} \text{s}^{-1})^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19.05 ± 0.03</td>
</tr>
<tr>
<td>25</td>
<td>22.46 ± 0.04</td>
</tr>
<tr>
<td>30</td>
<td>26.38 ± 0.05</td>
</tr>
<tr>
<td>35</td>
<td>28.50 ± 0.05</td>
</tr>
<tr>
<td>40</td>
<td>32.98 ± 0.06</td>
</tr>
</tbody>
</table>

* Values are given with their standard deviations.

Fig. 5 Fitting of the experimental rate constant for the nitrosation of minoxidil to the theoretical equation (eqn (5)). Dots are experimental values. Solid line fits eqn (5). [nit] = [mnox], 2 × 10^−4 M, pH = 4.00, \(T = 20^\circ\text{C}\), \(I = 0.2\text{ M}\).

On the basis of the \(\pi\) electronic structures of the nitrosatable substrates these results are consistent with an aromatic electrophilic substitution mechanism (Scheme 1). The two -NH2 groups of the minoxidil molecule activate electrophilic aromatic substitution in their respective ortho and para positions through their mesomeric effect. Since in both cases the activated position is the same (position 5, Fig. 1), the electrophilic aromatic substitution in that position should be reinforced.

As is well known, a primary kinetic isotope effect (KIE) can be detected by kinetic measurement only if the bond to the isotopically labelled atom is broken during or before the rate-determining step.28–31 This means that the C–H proton transfer involved in the slow kinetic step (\(k_c\), in Scheme 1) should show a primary isotope effect: \(k_{H^2O}^{H^2O}/k_{D^2O}^{D^2O} > 1\). Since kinetic deuterium isotope effects have been observed previously during the nitrosation of several aromatic and heteroaromatic substrates,18,23,31 eqn (5) was used to check the existence of a primary KIE. Taking into account that under adequate pH conditions \((k_o/K_c)\text{[H}^+\text{]} \gg 1\) and \([\text{H}^+] \gg K_1\), eqn (5) leads to the expression:

\[
\frac{k_{H^2O}^{H^2O}}{k_{obs}} = \frac{K_2^{H^2O}}{K_2^{D^2O}} \times \frac{k_{H^2O}^{H^2O}}{k_{D^2O}^{D^2O}}
\]

Since the average value of \(K_2^{H^2O}/K_2^{D^2O}\) is known (eqn (6)),14 knowledge of \(k_{H^2O}^{H^2O}/k_{D^2O}^{D^2O}\) is immediate. The KIE \(k_{H^2O}^{H^2O}/k_{D^2O}^{D^2O} = 7\) (Table 1), which indicates that proton loss from the Wheland intermediate is the slow rate-determining step, is characteristic of aromatic electrophilic substitution reactions.29

2.2 Product Identification and Characterization

Nitrosominoxidil (NOMnox) was synthesized following the procedure reported in the Experimental Section. X-ray diffraction analysis showed that minoxidil is nitrosated at position C-5 of the pyrimidine ring (Fig. 8). Comparison of the NMR spectra (in the supporting information) before and after nitrosation confirms that position as center of nitrosation.

In order to check that the product of the minoxidil nitrosation was the same as that of previously synthesized nitrosominoxidil, the UV-spectra and the values of their respective molar absorption coefficients were determined (Table 3 and Fig. 9). In addition, the two samples were compared using an Ultra Fast Liquid Chromatography technique (ULFC). Using a linear gradient chromography technique (ULFC). Using a linear gradient.
Fig. 7 $\Delta H^\ddagger /\Delta S^\ddagger$ isokinetic relationship for the C-nitrosation reactions of minoxidil (mnx) and other nitrosatable substrates: phenol (ph), m-cresol (mc), o-cresol (oc), 2,3-dimethylphenol (d23p), 2,6-dimethylphenol (d26p), 3,5-dimethylphenol (d35p), o-chlorophenol (ocp) and o-bromophenol (obp).18

Fig. 8 X-Ray structure section showing the site where minoxidil is nitrosated.

Table 3 Molar absorption coefficients for minoxidil, nitrosominoxidil synthesized (syn) and nitrosominoxidil formed along the nitrosation reaction (kin)

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ (nm)</th>
<th>ε (M$^{-1}$ cm$^{-1}$)a</th>
<th>$T/$\degree C</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOmnx (syn)</td>
<td>321</td>
<td>14,100 ± 100</td>
<td>20</td>
<td>4.08</td>
</tr>
<tr>
<td>NOmnx (kin)</td>
<td>321</td>
<td>14,070 ± 80</td>
<td>20</td>
<td>4.12</td>
</tr>
<tr>
<td>NOmnx (syn)</td>
<td>400</td>
<td>8,710 ± 30</td>
<td>29</td>
<td>4.08</td>
</tr>
<tr>
<td>NOmnx (kin)</td>
<td>400</td>
<td>5,180 ± 30</td>
<td>20</td>
<td>4.12</td>
</tr>
<tr>
<td>mnx</td>
<td>282</td>
<td>22,400 ± 100</td>
<td>20</td>
<td>3.90</td>
</tr>
</tbody>
</table>

a Values are given with their standard deviations.

program starting at 5 min, from 10\% to 100\% of acetonitrile over 32 min resolved the major peak from both samples. The UV-visible spectrum from this peak corresponded to NOmnx. Also, a positive-mode electrospray ionization mass spectrum of a sample from the nitrosation reaction was obtained, affording a mass/charge ratio = 239.1, which is coherent with the structure of the resulting nitrosocompound.

Fig. 9 UV-spectra of minoxidil (mnx), synthesized nitrosominoxidil (NOmnx), and nitrosominoxidil formed along the nitrosation reaction of minoxidil ([init] = [mnx] = 2 \times 10$^{-4}$ M). All spectra are depicted at pH = 4 and T = 20 \degreeC.

3 Conclusions

From the present work, the following conclusions were drawn:

(i) In the pH = 2.3–5.0 range, the minoxidil molecule undergoes aromatic nitrosation by nitrite. The dominant reaction is C-5 nitrosation through a mechanism that appears to consist of an electrophilic attack on the nitrosatable substrate by H$_2$NO$_2^+/NO^+$, followed by a slow proton transfer.

(ii) The reactivity of minoxidil as a C-nitrosatable substrate is 7-fold greater than that of phenol, this being attributed to the preferred para- and ortho-orientations of the two -NH$_2$ groups at positions 2 and 4 of the minoxidil molecule, which activate electrophilic substitution at position C-5 through their mesomeric effect.

(iii) A $\Delta H^\ddagger /\Delta S^\ddagger$ isokinetic relationship was found for the C-nitrosation reaction of minoxidil and other C-nitrosation reactions studied previously, occurring through electrophilic attack on the nitrosatable substrate by H$_2$NO$_2^+/NO^+$, followed by a slow proton transfer. This supports the idea of a common mechanism.

4 Experimental

4.1 General

Nitrosation reactions were followed by UV-visible spectrography, measuring the absorbance (A; Fig. 9) of the reaction product ($A = 321$ nm) with a spectrophotometer equipped with a thermoelectric six-cell holder temperature-control system (± 0.1 \degreeC). D-mnx was obtained by deuteriation of H-mnx with D$_2$O. Proton and carbon NMR spectra were recorded in CD$_3$OD with a 400 MHz spectrometer. UFLC separations were performed with a 100 mL injection volume on a reversed-phase C18 column 5 mm, 250 \times 10 mm, attached to a guard C18 column, using a gradient-controlled UFLC system equipped with a diode array detector and channel UV light detection at 320 nm. The column oven was set at 40 \degreeC and the temperature of the diode array cell was 40 \degreeC. H$_2$O and acetonitrile were used as the mobile phases and the flow rate was 1 mL/min.

4.2 Synthesis of nitrosominoxidil

Nitrosominoxidil was synthesized as follows: 4.9 g of minoxidil (23 mmol) were dissolved in 17 mL of THF and then 3 mL of
fluoboric acid (HBF$_4$, 48%) was added. The mixture was cooled to below 0 °C and an ice-cold sodium nitrite solution (1.6 g, 24 mmol) in water (7 mL) was added dropwise during continuous stirring. After several hours standing, the nitrosominiolixid precipitated as greenish crystals. After vacuum filtration, the crystals collected were repeatedly washed with acetonitrile and ether and then desiccated. A portion of the product was recrystallized in methanol to perform the determination tests.

Yield: 92%; m. p.: 180 °C; 1H NMR (400 MHz, CD$_3$OD) δ (ppm) 1.73 (m, 4H), 1.78 (t, J = 2.4 Hz, 2H), 4.13 (t, J = 3.6 Hz, 4H); 1C NMR (400 MHz, CD$_3$OD) δ (ppm) 25.6, 27.8, 139.8, 143.8, 154.4, 157.9; MS (EI) m/z 239.1

4.3 X-Ray Crystallographic Analysis of Nitrosominoxidil

A suitable single crystal of the compound was mounted on glass fibre for data collection on a diffractometer. Data were collected at 273 K using Cu-K$_\alpha$ radiation ($\lambda = 1.54178$ Å) and the o scan technique, and were corrected for Lorentz and polarization effects. Structure solution, refinement, and data output were carried out with the SHELXTL$^\text{TM}$ program package. The structures were solved by direct methods combined with difference Fourier synthesis and refined by full-matrix least-squares procedures, with anisotropic thermal parameters in the last cycles of refinement for all non-hydrogen atoms. Hydrogen atoms were placed at calculated positions. Hydrogen atoms from the solvent molecules were located directly on a difference Fourier map.

a) Crystal data for nitrosominiolixid: 4(C$_5$H$_5$N$_2$O$_4$) x 3 H$_2$O, M = 1007.10, triclinic, space group P1 (n° 2), $a = 10.2884(3)$ Å, $b = 13.6490(3)$ Å, $c = 18.6062(5)$ Å, $\alpha = 110.437(2)^\circ$, $\beta = 95.594(2)^\circ$, $\gamma = 91.674(2)^\circ$, $V = 2431.07(11)$ Å3, Z = 2, $D_\text{c} = 1.376$ Mg m$^{-3}$, $m = (\text{Cu-K$_\alpha$}) = 0.886$ mm$^{-1}$. 9168 reflections were collected at 2.55 ≤ 2θ ≤ 50.17 and merged to give 4834 unique reflections ($R_m = 0.0211$), which of 4285 with $I > 2\sigma(I)$ were considered to have been. The final values were $R = 0.0414$, $wR = 0.1096$, GOF = 1.037, max/min residual electron density 0.288 and −0.205 e Å$^{-3}$.

Acknowledgements

We thank the Spanish Ministerio de Ciencia e Innovación and the European Regional Development Fund (Project CTQ2010-18999) for supporting the research reported in this article. M.G.J. thanks the Spanish Ministerio de Ciencia e Innovación for a Ph.D. grant. J.A.V. thanks the Junta de Castilla y León for a Ph.D. grant. Thanks are also given to F. Sanz González for her help in the X-ray crystallographic analysis of nitrosominiolixid. Thanks are also given for the valuable comments made by the referees.

References

37 S. Senent, Cinética Química, UNED, Madrid, 1986.